
Introduction to Computer Science in 
JavaScript Scope and Sequence 

 
The CodeHS introduction to computer science curriculum teaches 
the foundations of computer science and basic programming, with an 
emphasis on helping students develop logical thinking and problem 
solving skills. Once students complete the CodeHS Introduction to 
Computer Science course, they will have learned material equivalent 
to a semester college introductory course in Computer Science and 
be able to program in JavaScript. 

 
Students learn the fundamentals of programming with an emphasis on problem solving 
and logical thinking. Topics covered include: graphics, animation and games, data 
structures, and more. 
 

Module 1: Programming with Karel 

35 hours (7 weeks) 
 

Teaches what it means to "program" and allows students to focus 
on solving problems using code, rather than getting bogged down 
in syntax. Students solve problems by moving Karel the Dog 
around the grid. 

CSTA Standards Addressed 
 
2-AP-10 Use flowcharts and/or pseudocode to address complex problems as algorithms. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3A-CS-01 Explain how abstractions hide the underlying implementation details of computing 
systems embedded in everyday objects. 
 



3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 
 

Module 2: Karel Challenges 

10 hours (2 weeks) 
 

Solve large and more complex problems using Karel. Several Karel 
challenges to tie everything learned in the Karel module together. 

CSTA Standards Addressed 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 
 

Module 3: Basic JavaScript and Graphics 

10 hours (2 weeks)  Introduces the basics of JavaScript, including variables, user input, 
control structures, functions with parameters and return values, 
and basic graphics, how to send messages to objects. 

CSTA Standards Addressed 
 
2-AP-11 Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 



3A-AP-18 Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 
 

Module 4: JavaScript Control Structures 

20 hours (4 weeks)  Learn about booleans, for loops, conditionals, nested control structures, 
and while loops. Use comparison and logical operators to control the 
flow of the program. 

CSTA Standards Addressed 
 
2-AP-11 ​Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 
3A-AP-17 ​Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 
 

Module 5: Functions and Parameters 

20 hours (4 weeks)  Learn functions with and without parameters, functions with and without 



return values, nested control structures, and local variables and scope. 
Using various kinds of functions such as functions with and without 
parameters and functions with and without return values. 

CSTA Standards Addressed 
 
2-AP-11 ​Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 
3A-AP-17 ​Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 
 

Module 6: JavaScript and Graphics Challenges 

5 hours (1 weeks)  Solve large and more complex problems using JavaScript and graphics. 
Graphics challenges tie everything in the module toegher.  

CSTA Standards Addressed 
 
2-AP-11 Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 



3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 

 
 

Module 7: Animation and Games 

25 hours (5 weeks)  Learn timers, randomizing games, mouse events, and keyboard events. 
Use timers to add randomizations to graphical programs, use mouse 
events for interactive programs, use keyboard events for interactive 
programs. 

CSTA Standards Addressed 
 
2-AP-11 ​Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3A-AP-17 Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 
 



3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 
3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 
3B-AP-19 Develop programs for multiple computing platforms. 
 

 
 
 

Module : Project - Breakout 

20 hours (4 weeks)  Learn timers, randomizing games, mouse events, and keyboard events. 
Use timers to add randomizations to graphical programs, use mouse 
events for interactive programs, use keyboard events for interactive 
programs. 

CSTA Standards Addressed 
 
2-AP-11 ​Create clearly named variables that represent different data types and perform 
operations on their values. 
 
2-AP-12 Design and iteratively develop programs that combine control structures, including 
nested loops and compound conditionals. 
 
2-AP-14 Create procedures with parameters to organize code and make it easier to reuse. 
 
2-AP-19 Document programs in order to make them easier to follow, test, and debug. 
 
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging 
prior student knowledge and personal interests. 
 
3A-AP-17 ​Decompose problems into smaller components through systematic analysis, using 
constructs such as procedures, modules, and/or objects. 
 
3A-AP-18 Create artifacts by using procedures within a program, combinations of data and 
procedures, or independent but interrelated programs. 
 
3A-AP-23 Document design decisions using text, graphics, presentations, and/or 
demonstrations in the development of complex programs. 
 



3B-AP-12 Compare and contrast fundamental data structures and their uses. 
 
3B-AP-14 Construct solutions to problems using student-created components, such as 
procedures, modules and/or objects. 
 
3B-AP-16 Demonstrate code reuse by creating programming solutions using libraries and APIs. 
 
3B-AP-19 Develop programs for multiple computing platforms. 
 

 


